κ-Opioid receptor inhibition of calcium oscillations in spinal cord neurons.

نویسندگان

  • Lakshmi Kelamangalath
  • Shashank M Dravid
  • Joju George
  • Jane V Aldrich
  • Thomas F Murray
چکیده

Mouse embryonic spinal cord neurons in culture exhibit spontaneous calcium oscillations from day in vitro (DIV) 6 through DIV 10. Such spontaneous activity in developing spinal cord contributes to maturation of synapses and development of pattern-generating circuits. Here we demonstrate that these calcium oscillations are regulated by κ opioid receptors (KORs). The κ opioid agonist dynorphin (Dyn)-A (1-13) suppressed calcium oscillations in a concentration-dependent manner, and both the nonselective opioid antagonist naloxone and the κ-selective blocker norbinaltorphimine eliminated this effect. The KOR-selective agonist (+)-(5α,7α,8β)-N-methyl-N-[7-(1-pyrrolidinyl)-1-oxaspiro[4.5]dec-8-yl]-benzeneacetamide (U69593) mimicked the effect of Dyn-A (1-13) on calcium oscillations. A κ-specific peptide antagonist, zyklophin, was also able to prevent the suppression of calcium oscillations caused by Dyn-A (1-13). These spontaneous calcium oscillations were blocked by 1 μM tetrodotoxin, indicating that they are action potential-dependent. Although the L-type voltage-gated calcium channel blocker nifedipine did not suppress calcium oscillations, the N-type calcium channel blocker ω-conotoxin inhibited this spontaneous response. Blockers of ionotropic glutamate receptors, 2,3-dihydroxy-6-nitro-7-sulfamoylbenzo(f)quinoxaline and dizocilpine maleate (MK-801), also suppressed calcium oscillations, revealing a dependence on glutamate-mediated signaling. Finally, we have demonstrated expression of KORs in glutamatergic spinal neurons and localization in a presynaptic compartment, consistent with previous reports of KOR-mediated inhibition of glutamate release. The KOR-mediated inhibition of spontaneous calcium oscillations may therefore be a consequence of presynaptic inhibition of glutamate release.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Allopregnanolone suppresses diabetes-induced neuropathic pain and motor deficit through inhibition of GABAA receptor down-regulation in the spinal cord of diabetic rats

Objective(s):Painful diabetic neuropathy is associated with hyperexcitability and hyperactivity of spinal cord neurons. However, its underlying pathophysiological mechanisms have not been fully clarified. Induction of excitatory/inhibitory neurotransmission imbalance at the spinal cord seems to account for the abnormal neuronal activity in diabetes. Protective properties of neurosteroids have b...

متن کامل

Dissociation of μ- and δ-opioid inhibition of glutamatergic synaptic transmission in superficial dorsal horn

BACKGROUND There is anatomical and behavioural evidence that μ- and δ-opioid receptors modulate distinct nociceptive modalities within the superficial dorsal horn. The aim of the present study was to examine whether μ- and δ-opioid receptor activation differentially modulates TRP sensitive inputs to neurons within the superficial dorsal horn. To do this, whole cell patch clamp recordings were m...

متن کامل

Cholecystokinin octapeptide reverses mu-opioid-receptor-mediated inhibition of calcium current in rat dorsal root ganglion neurons.

Cholecystokinin octapeptide (CCK-8) is reported to antagonize the analgesic effect produced by mu- and kappa- but not delta-opioid agonist in spinal cord. However, the mechanisms of interaction remain obscure. In the present study, whole-cell patch-clamp recording was performed on acutely isolated rat dorsal root ganglion (DRG) neurons to evaluate the effects of the highly specific mu-opioid ag...

متن کامل

Opioid receptor modulation of GABAergic and serotonergic spinally projecting neurons of the rostral ventromedial medulla in mice.

The rostral ventromedial medulla (RVM) is an important site of opioid actions and forms part of an analgesic pathway that projects to the spinal cord. The neuronal mechanisms by which opioids act within this brain region remain unclear, particularly in relation to the neurotransmitters GABA and serotonin. In the present study, we examined serotonergic and GABAergic immunoreactivity, identified ...

متن کامل

Cholecystokinin octapeptide reverses the kappa-opioid-receptor-mediated depression of calcium current in rat dorsal root ganglion neurons.

Although the cholecystokinin octapeptide (CCK-8) is reported to antagonize the kappa-opioid-receptor-mediated analgesic effect in spinal cord, its mechanism and sites of action remain obscure. In the present study, the whole-cell patch-clamp recording technique was employed to examine the effect of kappa-opioid agonist U50488H on voltage-gated calcium channels and the interaction between the CC...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular pharmacology

دوره 79 6  شماره 

صفحات  -

تاریخ انتشار 2011